Spin-orbit alignment of exoplanet systems: ensemble analysis using asteroseismology

Tiago Campante

University of Birmingham, United Kingdom

campante@bison.ph.bham.ac.uk

August 13, 2015

Obliquities of hot-Jupiter systems:

- Measured in over 50 systems
- Mostly based on Rossiter–McLaughlin (RM) effect
- Influence of tides
 - Strong tides \Rightarrow Low obliquities
 - Weak tides ⇒ Broad obliquity range

Need to consider systems with smaller planets, longer-period planets, and multiple planets!

180 -150 ŧ, proj. obliquity [deg] 0 120 HAT P.11 h 90 60 CoBoT(3) 30 -0 0.0001 0.0010 0.0100 m,/Maa

Obliquities vs. planet-to-star mass ratio

Albrecht et al. (2012)

Asteroseismology of *Kepler* exoplanet-host stars

- Solar-like oscillations excited by turbulent convection
- Cool-star asteroseismology with Kepler:
 - Several hundred dwarfs
 - Over ten thousand red giants
- ~ 100 KOIs with detected oscillations
- 1.2% precision in radius, 3.3% in mass, and 14% in age (Silva Aguirre et al. 2015)

KOIs with asteroseismic detections

Huber et al. (2013)

Asteroseismology of solar-like oscillations: the basics

Power spectrum of solar-like oscillations

Chaplin et al. (2013)

Stellar inclination angle from asteroseismology

- Non-radial modes are split by rotation
- Relative visibility of split components depends on stellar inclination

Previous applications of the asteroseismic technique

- Few hosts with single, non-transiting large planets (e.g., Gizon et al. 2013)
- Several Kepler Sun-like hosts (e.g., Benomar et al. 2014; Lund et al. 2014)
- Kepler-56: a misaligned multi-transiting system (Huber et al. 2013)

Observer-oriented coordinate system

- For a transiting planet:
 - $i_{\rm o}$ from transit photometry
 - λ from RM effect
- $i_{\rm s}$ from asteroseismology or { $R_{\rm s}, P_{\rm rot}, v \sin i_{\rm s}$ }
- Only the spin-orbit angle ψ has intrinsic physical significance

Asteroseismic analysis: sample characterization

- 25 solar-type KOIs
- Mostly main-sequence stars (a few subgiants)
- Late F to early K
- 14 multi- and 11 single-transiting systems
- Prevalence of systems with small and long-period planets

Asteroseismic sample

Asteroseismic analysis: the case of HAT-P-7

Asteroseismic analysis: the case of Kepler-25

Asteroseismic analysis: statistical constraints

Average posterior of $\cos i_s$

Extending the sample

Combined sample: statistical constraints

- True distribution of spin-orbit angle ψ ?
- Hierarchical Bayesian analysis (Hogg et al. 2010)
- Model distribution function of ψ as Fisher
 - Small $\kappa \Rightarrow$ broad distribution
 - Large $\kappa \Rightarrow$ low obliquities
- Consistent with Morton & Winn

Single-Fisher model

Combined sample: statistical constraints

0.16 Single-transiti Multi-transiting All systems Probability Density 0.10 0.08 0.06 0.02 Fisher Concentration Parameter κ Single-transiting Multi-transiting All systems Probability Density Fraction of Isotropic Systems f

• Mixture model (isotropic + Fisher)

- *f* represents fraction of isotropic systems
- Obliquity distribution of single-transiting systems may be multimodal: two distinct migration channels?

- Kepler-56 (Huber et al. 2013) remains as the only unambiguous misaligned multiple-planet system
- Ensemble analysis suggests correlation between directions of stellar spin and planetary orbital axes
- Our analysis favors migration mechanisms capable of exciting large obliquities in explaining hot-Jupiter formation
- No significant difference between posteriors of single- and multi-transiting systems based on asteroseismic sample

Outlook

Predicted *TESS* asteroseismic yield for exoplanet hosts (full-frame images)

- Sullivan FFI data HR diagram with Detection Probability > 0. 10^{1} 12.0 1.6M. (1.4Ma I band Apparent Magnit 1.2Ma $1.0 M_{\odot}$ 10^{0} 0.8M-170 data points 7000 6500 6000 5500 5000 $T_{\text{eff}}(\mathbf{K})$
- Obliquities of systems with evolved hosts with *TESS*?
- *PLATO* will extend these measurements to bright solar-type hosts in wide fields

M. N. Lund^{2,1}, J. S. Kuszlewicz^{1,2}, G. R. Davies^{1,2}, W. J. Chaplin^{1,2}, S. Albrecht², J. N. Winn^{3,4}, T. R. Bedding^{5,2}, O. Benomar⁶, D. Bossini^{1,2}, R. Handberg^{2,1},
A. R. G. Santos^{7,1}, V. Van Eylen^{2,4}, S. Basu⁸, J. Christensen-Dalsgaard², Y. P. Elsworth^{1,2},
S. Hekker^{9,2}, D. Huber^{5,10}, C. Karoff^{11,2}, H. Kjeldsen², M. S. Lundkvist², T. S. H. North^{1,2}, V. Silva Aguirre², D. Stello^{5,2}, T. R. White¹²