Brief Introduction to China's Space Astronomy Programs

> Shuang-Nan Zhang zhangsn@ihep.ac.cn

Center for Particle Astrophysics Institute of High Energy Physics Chinese Academy of Sciences

China's Space Astronomy Satellites

Hard X-ray Modulation Telescope (HXMT)

➤Main scientific objectives (1-250 keV energy band)
✓Scan monitoring of the Galactic plane → transients watch dog: need ground follow-up observations.

- ✓Pointed observations → Black hole and neutron star x-ray binaries: need coordinated ground observations
- Satellite Facts:
 ✓ Mass: ~2800 kg
 ✓ Orbit: 550 km, 43°
 ✓ Lifetime: 4 yrs

Officially approved in March 2011 Now in final stages of FM and calibration Planned launch time: Aug. 2016 Core programs open to many international scientists and organizations to reward their contributions to HXMT

HXMT Payloads

High Energg (HE): Nal/CsI, 20-250 keV, 5000 cm²

Medium (ME): Si-PIN,5-30 keV, 952 cm²

Low Energy (LE): SCD,1-15 keV, 384 cm²

HXMT Sensitivity

DAMPE: launch in ~Dec. 2015

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement \implies high energy γ -ray, electron and CR telescope

Gamma-ray mapping by 30 days

DAMPE for gamma-ray line observations

DAMPE will confirm or deny the "suspicious" dark matter annihilation line of Fermi with high significance

SVOM: ~2021 launch (China-France)

Prompt dissemination of GRB parameters

GRB observation strategy

X-ray Timing and Polarization (XTP) mission

2015-08-05

XTP satellite baseline design

Enhanced XTP (or eXTP): option 1

2 lines*5 columns*2 panels = 20 LAD
 ~1.5 m² effective area for collimating detectors

+ LOFT consortium: Italy, UK, Germany, Switzerland, Netherland ...

2015-08-05

LOFT LAD

Effective area of eXTP option 1

Enhanced XTP (or eXTP): option 2

- 2 lines*5 columns*4 panels+2 = 42 LAD
 - ~3 m² effective area for collimating detectors
 - Loss of ~ 0.1 m² of XTP LFA

Einstein Probe (EP)

Lobster-eye optics

Selected for Phase 0/A in 2013, proposed for launch in 2020-2025. + UK

EM counterparts of GW explosions

Black holes of all scales in the universe

Capability of Einstein Probe

China's Space Station Program

China's Space Station Astronomy Program

Gamma-ray burst polarization : POLAR

- China- Switzerland
 collaboration
 - Energy range: 50-350 keV;
 FOV of POLAR: ~¹/₂ sky
- Onboard China's spacelab TG-2: launch time Aug. 2016
- Main science: GRB jet & central engine; tests of quantum gravity theories

POLAR ESRF Calibration

Results agree with Monte-Carlo simulations

Effective Area of POLAR

- Monte Carlo based study
- A_{eff} is dependent on E and incoming photon angle
- Figure of merit: $A_{eff} \times \mu_{100}$

S. Xiong, N. Produit, B. Wu, Expected performance of a hard X-ray polarimeter (POLAR) by Monte Carlo simulation, Nucl. Instr. and Meth. A 606 (2009) 552

E. Suarez Garcia, Ph.D. Thesis, Univ. de Genève, 2010

NEATER Payloads: 2020 launch

+ Italy

F~ 1 m Single ref. MPO or nested shells?

Collimated detectors Si ~400 cm²

Polarization E=0.25 keV ~1200 cm²

Energy: Si ~100 cm² Polarimetry: GPD 50 cm²

Payload Assembly

Weight: 146 kg Power: 250 W Size <1500*1400*1500mm

Targets Primary: isolated pulsars Secondary: accreting pulsars, microquasars, blazars

Pathfinder of XTP

X-ray All Sky Monitor (XASM): 2020 launch

XASM Design: Lobster Eye Optics

HERD: 3D Calo & 5-Side Sensitive

2015-08-05

background

Gamma-ray

electron

A start of

Dark matter particle

He

2015-08-05

31/40

proton

Expected performance of HERD

γ/e energy range (CALO)	tens of GeV-10TeV
nucleon energy range (CALO)	up to PeV
γ/e angular resol. (Si-strips)	0.1°
nucleon charge resol. (Si-strips)	0.1-0.15 c.u
γ/e energy resolution (CALO)	<1%@200GeV
proton energy resolution (CALO)	20%
e/p separation power (CALO)	<10 ⁻⁵
electron eff. geometrical factor (CALO)	3.7 m ² sr@600 GeV
proton eff. geometrical factor (CALO)	2.6 m ² sr@400 TeV

2025 launch?

HERD sensitivity to gamma-ray line

DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2020-2021

DM annihilation line of HERD

Expected HERD Proton and He Spectra

Expected HERD Spectra of C and Fe

Chinese Space Station Optical Survey

- 25000□° imaging survey: 250-1050nm, ≥6 filters, g, r, & i ≥ AB25 mag (5σ, point source)
- 800□° deep imaging survey: g, r, & i ≥ AB26.5 mag
- 10000□° medium & high galactic latitude slitless spectroscopy survey: g, r, & i continuum ≥ AB21 mag

Survey Science

Cosmology: dark energy, dark matter, gravity, large-scale structure, neutrinos, primordial non-Gaussianity...

AGNs: high-z AGNs, clustering, dual AGNs, 360 variability, UV excess, host galaxies...

Galaxies: formation & evolution, mergers, high-zs, dwarfs, LSBs, near field, halos properties... Milky Way: structure, satellites, dust, extinction... Stellar science: formation, dwarfs, metal poor... Solar system (high inclination): TNO、 NEA... Astrometry: reference frame, star clusters...

Comparison with Other Surveys

Project	Site	Launc h/Op	FoV	R _{EE80}	Num pixel s	Area	Wavelength	Num Filter	Spec
			aeg		10°	aeg	nm		
Space Station	LEO	2022	1.1 0.002	0.15 0.25	2.5 0.002	25000 -	250—1050 900—1700	7 2	yes yes
Euclid	L2	2020	0.56 0.55	>0.2 0.6	0.6 0.07	15000	550—920 1000—2000	1 3	no yes
WFIRST	GEO	≥2024	0.28	>0.2	0.3	2400	927—2000	4	yes
LSST	Chile	2022	9.6	>0.7	3.2	20000	320—1050	6	no

5 point source limiting AB mag of Space Station Survey

	Exp	NUV	u	g	r	i	Z	Y
Imaging	2×150s	25.5	25.5	26.1	25.9	25.7	25.5	24.7
Deep Imaging	7×200s	26.5	26.5	27.1	26.8	26.7	26.5	25.7
Slitless Spec	2×200s	20.3	21.0	21.3	21.4	21.4	21.5	21.0

Comparison with Other Surveys

The Chinese space station optical survey is very competitive among its peers, and its capability, especially high-resolution near-UV imaging and slitless spectroscopy in the optical, is unique and highly complementary to other surveys.

Summary

- Astronomy satellite
 - Approved: DArk Matter Particle Exploration (DAMPE, 2015), Hard X-ray Modulation Telescope (HXMT, 2016), Space Variable Object Monitor (SVOM, 2021)
 - Phase 0/A: Einstein Probe (EP: 2020), X-ray Timing and Polarization (XTP: <2025?)
- Manned Space Flight Program
 - Approved: Gamma-ray burst polarization (POLAR, 2016), NEATER (2020), XASM (2020), Space Station Optical Survey (2022?)
 - Phase 0/A: HERD (2025?)

Significant international contributions to all missions!